
Fr h ,f, TM P

RADC-TR-88-1 90
Final Technical Report
September 1988

- 203 e82

PERFORMANCE EVALUATION OF
PARALLEL ALGORITHMS AND
ARCHITECTURES IN CONCURRENT
MULTIPROCESSOR SYSTEMS

Clarkson University

Sponsored by DTIC
Strategic Defense Initiative Office S EL 1 0CTE

S 4 F EB 1902

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained In this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of
the Strategic Defense Initiative Office or the U.S. Government.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

.: ., .,- "! --.. .. -:

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Service (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-88-190 has been reviewed and is approved for publication.

APPROVED: .K , ,

ALAN N. WILLIAMS, ILt, USAF
Project Engineer

APPROVED:

RAYMO P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMER:

JAMES W. HYDE III
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (COTC) Griffiss AFB NY 13441-5700. This will assist us

in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS
AND ARCHITECTURES IN CONCURRENT MULTIPROCESSOR

SYSTEMS

H. H. Ammar JTIc Tt-

Y. S. FongI i' .

R. Mukundan / J
C. A. Pomalaza-Raez

1COO

o, or",, I >" Or J

Contractor: Clarkson University

Contract Number: F30602-81-C-0169
Effective Date of Contract: 29 January 1987 1
Contract Expiration Date: 30 September 1987
Short Title of Work: Performance Evaluation of Parallel

Algorithms and Architectures in
Concurrent Multiprocessor Systems

Period of Work Covered: Jan 87 - Sep 87

Principal Investigator: Y. S. Fong
Phone: (315) 268-2126

RADC Project Engineer: Alan N. Williams, lLt, USAF

Phone: (315) 330-2925

Approved for public release; distribution unlimited.

This research was supported by the Strategic Defense
Initiative Office of the Department of Defense and was

monitored by Alan N. Williams, lLt, USAF, RADC (COTC),
Griffiss AFB NY 13441-5700 under Contract F30602-81-C-0169.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE 0M8No, 704-0108

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/A
2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION! DOWNGRADING SCHEDULE distribution unlimited.

N/A distributionunliited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-190

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Clarkson University I PP cable Rome Air Development Center (COTC)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Dept of Electrical & Computer Engineering Griffiss AFB NY 13441-5700
Postsdam NY 13676

8a NAME OF FUNDING/ SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Strategic Defense (If applicable)

Initiative Office (SDIO) F30602-81-C-0169

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Officc of fth Sccretary of Dcf 'se PROGRAM PROJECT TAIKAIC)K I N!T
ELEMENT NO No iNO ACCESSION NO

,ash Dc 20301-7100 63223C B413 03 P2

11 TITLE (Include Security Classification)

PERFORMANCE EVALUATION OF PARALLEL ALGORITHMS AND ARCHITECTURES IN CONCURRENT MULTIPROCESSOR
SYSTEMS

12 PERSONAL AUTHOR(S)

H.H. Ammar, Y.S. Fong, R. Mukundan, C.A. Pomalaza-Riez
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Final IFROM Jan 87 TO SeM 87 September 1988 26

16 SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Multiprocessing Processor Evaluation Tools
12 07_ Concurrent Processing Trace-Driven Simulations

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

VThis report describes the research effort directed towards the study of issues concerning
concurrent systems. Specifically the report concentrates on the design, evaluation, and
tuning of application programs on parallel architectures. Issues including mapping algorithm
to architectures, and parallel programming support tools are also discussed. It is
recognized that the currently available concurrent system analysis tools are not adequate in
determining the detail performance of the application programs on specific architectures. To
remedy this shortcoming, we recommend the development of a multiprocessor trace-driven
simulator. This simulator will be beneficial to the evaluation on the performance of the SDI
battle management algorithms on specific concurrent systems.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

GUNCLASSFIEDUNLIMITED C) SAME AS RPT ' OTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Alan N. Williams iLLt USAF (315) 330-2925 RADC (COTC)
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

L INTRODUCTION

The complexity in a concurrent system is formidable. There are multiple processors

executing programs concurrently. The communications and synchronizations among in-

dividual or groups of processors are vital to the success of program execution. Resource

contention and information flow requirements add their tolls to the overall load of the

system. On top of this, the partitioning and balancing of the task in the parallel archi-

tecture put more stress on the overall system. It is essential that, under this tremendous

complexity, a user has an indication of the performance of a certain task in such a system.

In other words, the user has a knowledge of the utility and efficiency of the processors, can

detect where the execution or communication bottleneck exists, and will be able to modify

or fine-tune the program, the parallel architecture, or both to optimally execute the task.

This report describes the research effort carried out by this group in the general area

of performance evaluation in concurrent systems. Specifically, the issues discussed include

the mapping of algorithm onto parallel architecture, the parallel programming software

tools, and the evaluation and tuning of algorithms on parallel architectures.

As alluded to in the next section multiprocessor systems are usually classified as

loosely-coupled or tightly-coupled. The main concern of this report is the tightly-coupled

system. But one of the issues discussed, namely the mapping of algorithms onto parallel

architectures, is more of an issue in the loosely-coupled system. Thus the report starts

with a discussion of issues in the loosely-coupled concurrent system, then it enters a short

survey of the currently-available parallel programming tools on tightly-coupled systems.

Finally the report presents an analysis of the performance evaluation issue and recommends

the implementation of a multiprocessor trace-driven simulator. This simulator will be

beneficial towards the analysis of the performance of SDI Battle Management Algorithms

on specific concurrent processing systems.

II. MULTIPROCESSOR ISSUES

Multiprocessing systems can be divided into two main categories, loosely coupled,

and tightly coupled systems. Loosely coupled systems have a distributed memory ar-

chitecture and implement interprocess communication (IPC) using the message passing

model. Examples of such systems are the intel's iPSC, the Ncube, the FPS T-series, and

the Ametek's System 14. Tightly coupled systems, on the other hand, have for the most

part a shared memory architecture and implement a shared memory and/or a message

passing [PC modcl. Examples of such systems are the Encore Multimax, the Sequent Bal-

ance 8000, the Flex/32, the Alliant FX/8, and the BBN Butterfly. IPC delays are much

more costly in loosely coupled systems than in tightly coupled ones. Measurements on the

intel's iPSC hypercube have shown that the delay encountered in sending a message from

a node to one of its nearest neighbors is 1 ms which is quit excessive for applications with

frequent communications and synchronizations.

It is well known from the experiences gained in programming the above systems that

shared memory systems are much easier to program than distributed memory systems.

This is due to the mapping problem that exists in distributed memory systems which

is discussed in more details below. However, debugging programs on a shared memory

architecture is much more difficult than on a distributed memory system because in the

2

later a certain task is assigned to a certain node in the system, therefore problems can be

easily located.

In the next section a brief discussion of some of the features of loosely coupled multi-

processors will be presented. Emphasis is given to the problems of mapping and scheduling.

III. MAPPING AND SCHEDULING ISSUES

Suppose that for the given computational task a suitable algorithm has been provided.

Assume that this algorithm has been divided into some number of subtasks in such way that

some of these subtasks can be run concurrently. As these subtasks run (on the different

processors), they may need to exchange data amongst themselves, and it may not be

possible to start the execution of one subtask before the completion of some other subtasks.

In order to estimate the behavior of the algorithm on the system it is necessary to estimate

the extent of this data communication between subtasks and their data dependence. The

scheduling problem is then to find the optimum allotment of these subtasks among the

processors so that the maximum possible speedups (or any other performance parameter)

is achieved. For example subtasks that exchange data frequently should be allotted to

processors that are adjacent, i.e., directly connected to each other.

It can then be said that having several subtasks and their relationships with respect to

data dependency, and several processors (not necessarily identical), with their interconnec-

tion scheme one needs to map one on the other. In a most ideal system little information

will be available beforehand on the nature of the tasks being performed and this mapping

problem has to be done at runtime, dynamically, as subtasks are created. The time spent

on this mapping will add to the total time that it takes to complete the task. This map-

ping time cannot in general be ignored and will degrade the performance of the system,

specially in real-time applications, where time is of the greatest importance. A lot of work

has been done in regarding the problem of allocating noninteracting tasks in a distributed

environment. Nottoo much attention has been paid to the data dependency of the com-

munication amongst the tasks. However in a multiprocessor environment, interprocessor

3

communication, overhead play an important part in determining the performance of the

system.

In [1] a graph model of a modular program and the maximal-flow algorithm is used

to obtain an optimal assignment of subtasks or modules to a two-processor system. In the

graph model each module is represented by a node and the weight on the edge connecting

two nodes represents the costs of an intermodule reference when the two nodes are assigned

to different computers. Each cutset of this graph partitions the graph into two disjoint

subsets, and each subset could be assigned to each processor such that the weight of the

edges comprising the cutset could be minimized. This will translate in a minimization of

the total runtime. Generalizations for more than two processors can also be made.

A more general case of this mapping problem is described in [2]. It is assumed there

that most of the multiprocessors systems are incompletely connected, that is, a direct

link does not connect each pair of processors. When assigning modules to processors,

pairs of modules that communicate with each other should be placed, as far as possible,

on processors that are directly connected. It is first shown that this problem is very

difficult and that an optimum solution can be seldom found in a practical manner. It then

describes an heuristic algorithm that was developed to solve this problem for a specific

array processor.

Another method called the wave scheduling is proposed in [3]. Here it is assumed

that there is a hierarchical level of control in the form a tree and that it is wanted to

execute many independent parallel programs simultaneously in a large multiprocessor. The

collection of tasks that constitute a parallel program is called a task force. A task force

needing a specific number of nodes is entered in a queue at any node, and the hierarchical

control at the root of the subtree schedules the enqued task force that are no larger than

the number of nodes in the subtree. This decentralized wave scheduling works well with low

to moderate works loads and its efficiency is comparable to that of a centralized scheduling.

For the case where neither all the processors nor all the channels bandwidths are

4

identical [30] describes a procedure that again is based in gra * heoretic results. The

algorithm proposed makes use of two graphs, the Computational Flow Graph, (CFG), and

the Computation Resource Graph, (CRG). The CFG is a directed graph that shows the data

dependency or the interrelationships with respect to data exchange between the various

subtasks. Each node represents a subtask and each edge has a value that represents the

amount of data that will need to be transferred. The CRG is a undirected graph in which

the nodes are the processors and the edges denote the channel between the two adjacent

processors. The mapping algorithm accepts these two graphs as input, and produces as

output the mapping of the CFG on the CRG. Once the mapping is done, a simulation

program is run that will give an estimate of some important parameters that can be

used to evaluate the performance of the architecture/algorithm combination that has been

employed.

In all of these methods it is assumed that the algorithms to be used have already par-

titioned into their respective subtasks. This is still being done mostly by the programmer.

Work is currently underway to develop intelligent compilers that can extract parallelism

from programs written for sequential machines.

IV. PARALLEL PROGRAMMING SOFTWARE TOOLS

This is a short survey section that intends to summarize available software tools for

parallel programming currently on the market. By software tools for parallel programming

we mean the following three categories of software aids:

1. Parallel program performance evaluation software and simulator

2. Parallel program debugger

3. Other parallel programming support.

This survey is very brief, and does not intend to be complete. It merely provides

a random sampling of the current market situation. The information is taken from the

documents provided by the vendors.

5

Performance evaluation tool.

Sequent Balance series

The DYNIX operating system of the Sequent Balance series machine provides several

utilities which can be used to measure the performance of the program. These utilities

are:

1. prof- This command reports the number of times each subroutine is called, and the

amount of time spent in each subroutine.

2. gprof - This command is similar to prof, but also prints a call graph that shows

profiling data in the context of the program's subroutine call hierarchy.

3. size - This command reports the amount of memory used by a program's machine

code and data structure.

4. time - This command reports the program's totai execution time, in terms of both

real time and CPU time. Other options are also available to report more information

about the program being timed, such as memory size, page faults, I/O operations, and

context switches. In parallel situation, the report can be prepared for each process,

not just for the whole application.

Alliant FX/Series

Concentrix, the Alliant operating system, is a full native port of the Berkeley Unix

operating system and includes programming and system management tools required for an

efficient use of the architecture. There is a system monitor (mon) that graphically details

the percent utilization of all system resources. This tool enables the "tuning" of a multiuser

system to provide balanced support for large and small production jobs. mon monitors

the utilization of system resources and display status information in real time. It has three

modes of operation: family mode, system mode, and computing resource mode. Thus for

example in the family mode mon monitors a target process and all its descendent process.

6

At the programming level there are facilities such as gprof that collects and reports timing

information on a per-routine basis.

Debugging tool.

Sequent "aiance series

fhe DYNIX system provides the Pdbx debugger to enable a programmer to debug

a compiled C, FORTRAN, or Pascal program without having to understand the assembly

language output produced by the compiler. Pdbx is a version of the UNIX 4.2bsd dbx

debugger that has been enhanced to support the debugging of programs that consist of

multiple concurrent processes. Pdbx allows the programmer to set break points on pro-

cesses, stop one or more processes based on events in a specified process, or step through

a program. Pdbx also supports the debugging of applications that consist of tnultiple

processes created from different programs.

Alliant FX/Series

Concentrix also provides a version of the dbx debugger. Its capabilities are very

similar to the one from the Sequent series.

Parallel programming support.

Sequent Balance series

The Sequent DYNIX operating system also contains other supports for parallel pro-

granming.

1. Parallel programming library - The DYNIX Parallel Programming Library simplifies

the use of shared memory and supports the most commonly used parallel program-

ming mechanisms. This library is designed for use with homogeneous multitasking

applications written in C, FORTRAN, or Pascal.

2. FORTRAN Parallel Processor - In FORTRAN programs, most loops are implemented

as DO loops, so Sequent provides a parallel processor that automatically converts

7

selected FORTRAN DO loops to execute in parallel.

Alliant FX/Series

The Fortran compiler has options that automatically or with very little human in-

tervention provide concurrency and vectorization optimizations. These are in addition

to the general and directive optimizations options. At the present time only, the Alliant

FX,/Fortran and the compiler developed for the Warp processor are the only compilers

that have these capabilities.

Occam and the Inmos Transputer

Occam is a computer language for parallel programming. It is based upon the con-

ceDt of parallel execution. It also provides automatic communication and synchronization

between concurrent processors. The Inmos Transputer is a single-chip computer whose

architecture facilitates the construction of parallel processing systems. The Transputer

executes occam programs more or less directly. It can be say that occam is the assembly

language of the Transputer.

V. DESIGN, EVALUATION, AND TUNING OF

APPLICATION PROGRAMS ON PARALLEL ARCHITECTURES

Performance is one of the key issues that needs to be taken into account in the de-

sign, development, configuration and tuning of parallel algorithms and architectures. The

evaluation of a system also include such factors as ease of use, availability, reliability, and

security. Achieving maximum performance involves not only tuning the parallel algorithm

for a given architecture (e.g., adjusting the granularity of parallelism and the distribution

of data between the shared and local memories) but also tuning the underlying architec-

ture, since often minor changes in the architecture can cause a significant improvement in

performance.

In general computer performance evaluation methods are divided into three main

areas (see [4] for a good survey), namely performance measurements, analytic performance

8

modeling, and simulation performance modeling. Performance measurements [101 is of

course suitable only for tuning the parallel algorithm on an existing running architecture.

However modeling is required in order to otherwise predict the performance under different

architectural changes. One of the principle benefits of performance modeling, in addition

to the quantitative prediction obtained, is the insight into the structure and behavior of

the system that is obtained by developing a model. However, such models must first be

validated using performance measurements on an existing architecture before they can be

used with greater confidence to investigate the performance effects of design enhancements

and configuration changes.

Performance models span the range from simple analytically tractable models to very

detailed trace-driven simulation models. Analytical models for parallel processing were

discussed in [5-91. However, such models can't be easily extended to incorporate all the

delays encountered during the execution of a parallel program on a parallel architecture.

For example the model proposed in [9] does not consider delays due to contention for shared

memory or overhead delays due to task scheduling and synchronization. This is of course

due to the complexity of parallel processing systems, therefore a detailed analytic model

will rapidly become intractable [6,11]. The development of simple tractable and accurate

analytical models for parallel processing systems is still an active area of research.

Trace-driven simulation models, though more expensive to develop and less flexible to

change than analytic models, allow a detailed and precise modeling of the various activities

in the system. And by utilizing parallel simulation techniques [12,28], the execution of an

entire application program amounting to hundreds of millions of instructions on a parallel

architecture can be efficiently simulated. Moreover using modular design techniques a

simulation model can be developed to simulate the execution of a parallel application

program on several parallel architectures.

A methodology for tuning algorithms to architectures is described below. A simple

implementation of a trace-driven simulator of a shared memory multiprocessor system

9

which demonstrates the performance tuning methodology is described in [29].

Performance evaluation methodology.

In this section, using the above mentioned remarks, we describe a methodology for

evaluating the performance of an application algorithm on a parallel architecture. Fig. 1

summarizes the various steps needed as well as the supporting tools. The user interacts

with a parallel program development tool with which he could define and code a parallel

program for his application. A trace-driven simulator is then used to simulate the execution

of the parallel program on predefined parallel architecture. The simulator produces a trace

file and a summary of some performance statistics users would like to know right Lfter the

simulation run (e.g., the speedup and the utilization of each CPU). The trace file generated

can be used to obtain a more detailed analysis of the various performance bottlenecks in the

system. This is accomplished by a trace analysis tool equipped with graphics capabilities

to aid the user in analyzing different parts of the system. The user can then go back and

tune the program or the architecture to eliminate bottlenecks. In the rest of this section

we discuss in more details each of the above mentioned tools.

Parallel Program Development Tools.

Tools for parallel program development can range from tools which provide the pro-

grammer with locks and synchronization primitives to tools which provide automatic par-

allelization of sequential code [21,221. The primitives can be in the form of library of

subroutines or language extensions see for example [14-18]. They leave all the problems of

program partitioning, scheduling, and synchronization for the programmer. While some ex-

perience have already been gained in developing parallel programs using such tools [19,201,

the process can prove to be tedious for large application programs. However, at the other

extreme, the later tools which does not leave to the programmer any control over paral-

lelism are not yet efficient enough since the only automatic tool available to date is limited

to individual loops.

10

APPLICATION ALGORITHMI

PARALLEL PROGRAM,~ PARALLEL PROGRAMI
TUNING W DEVELOPMENT TOOL

SYSTEM SPECIFI CATION TAEDIE

AN UNN s- SIMULATOR____

TRACE FILE ANDI PERFORMANCE
STATISTICS

TRACE

ANALYSIS
T OOL

Fig. 1 Performance Evaluation Methodology

In [241 a cojnputer-aided multiprocessor programming tool (CAMP), which follows an

approach in the middle of the above two extremes, is described. CAMP let the user defines

or extracts different program segments. It then helps in partitioning these program seg-

ments into a number of processes, and inserting synchronization primitives where needed.

The user is involved in either decision making (which segment is to be parallelized and

to what extent) or the writing of program codes in parallel format possibly after being

restructured by CAMP. For example the user may extract an iterative segment (a loop)

of the algorithm he trying to code and if the iterations are independent he can write it as

a parallel loop. However, if the iterations are dependent CAMP will attempt loop align-

ment or restructuring techniques [24] to eliminate or minimize synchronization between

iterations.

The FX/Fortran compiler developed for the Alliant multiprocessor [23] implements

some of the ideas mentioned in CAMP. It permits the user to control parallelism at the

program, subprogram, and loop levels. When enabled by the user, the compiler optimizes

program segments for concurrency and vectorization. It analyzes programs for data de-

pendencies and generates an optimized executable code for DO loops and DO WHILE

loops.

The above tools are not only important for parallel programs development, but also

for the tuning of such programs to the underlying parallel architecture.

Simulation tools.

Although the program development tool CAMP described in the previous section in-

corporates a simulator which estimates the speedup achieved for different partitioning and

synchronization strategies. It does not provide a detailed trace and performance statistics

for the execution of a program. Simulation tools which rely on a simplied model for the

system often miss some of the important factors that may greatly influence system perfor-

mance. For example in a shared memory multiprocessor with a multistage interconnection

network (IN), a simplified simulation model might assume a fixed average value for the

12

delay encountered in the IN for each shared memory access. If hot spots [25) occur often

during the execution of a program such a delay will have a tremendous variability which

have a significant impact on performance.

Stochastic simulation models, though can be made quite general and easily adaptable

to changes, are faced with the problem of estimating the distributions of the random

variables which define the model (e.g., the time between two consecutive shared memory

accesses).

As mentioned earlier, trace-driven simulation models which simulate the execution of

a program statement by statement on a given architecture are the most precise. However,

they are also the most expensive in terms of computer time. In [28], PSIMUL, a trace-

driven simulator developed for the study of memory access patterns of parallel programs,

is described. The information generated from PSIMUL is mainly about memory reference

patterns of each simulated process, therefore, observations on shared and private data,

their frequency of access and locality can be obtained. It is developed for the RP3 archi-

tecture [26] and for application programs written using the VM/EPEX parallel processing

environment [17].

In [27], MULTIMOD, a trace-driven simulation model for a multiprocessor, is de-

scribed. The architecture modeled is a shared memory system with a Banyan or a full

crossbar interconnection network for data and synchronization and a ring network for task

handling. The model accepts an ordinary Fortran source program and augments it with

special functions to support distributed task creation and synchronization. Such functions

are used to parallelize DO loops only without user control. The model is also not amenable

to architectural variations as proclaimed except for the interconnection network to some

extent, and is not suitable for simulating large application programs.

A parallel trace-driven simulator model can be developed to efficiently simulate large

application programs. Such a model is inherently parallel since it simulates a parallel

processing system. Therefore, it can be developed and executed efficiently in a paral-

13

lel processing epivironment such as the Alliant system. Moreover, using modular design

techniques, the model can be made amenable to architectural variations to improve per-

formance and to accommodate new ideas.

Trace Analysis Tools.

A trace analysis tool is a tool that analyzes the trace file and produces detailed

accounts of resource usage, data access behavior, and the various overhead delays encoun-

tered during the execution of the parallel program. There can be many passes through the

trace file, each producing different reports or displays. Such tools are usually designed for

interactive use and equipped with graphics capabilities.

In [10], Monit, a performance monitoring tool for parallel programs, is described.

Monit uses trace files that are generated during the actual execution of parallel programs

written in the parallel processing environment PPL on a Sequent Balance 8000 multipro-

cessor system. Therefore, the trace files produced contains slightly distorted results due

to the data collection overhead during actual program execution on the Sequent. Monit

analyzes these trace files and produces time oriented graphs of resource usage and system

queues. Users interactively select the displayed items, resolution, and time intervals of in-

terest. The current implementation of Monit is for the SUN-3 workstation. The program

however is easily adaptable to other systems and efforts to generalize its use to analyze

traces produced by simulators are underway.

VI. CONCLUSION

The major issue presented by this report is the performance evaluation of large parallel

programs on large parallel architecture. It is an important issue in concurrent systems,

specially more so in connection with the SDI Battle Management requirements. From the

discussion in the report, it is obvious that currently there is no readily-available good per-

formance evaluation tools. To adequately simulate and analyze the performance of large

14

parallel programs on concurrent system, such as the case in SDI Battle Management Algo-

rithms, a parallel trace-driven simulator must be developed. This simulator will be able to

simulate accurately and efficiently the large application programs. Moreover, the modular-

type construction will enable the modification of the simulator due to architectural changes

and to accommodate new proposals.

We thus recommend the development of a parallel trace-driven simulator for the eval-

uation of parallel programs on concurrent systems. A preliminary version of the simulator

has been developed [29]. This simulator can be generalized to accommodate the require-

ments of evaluating larege application programs. Some analytic modeling of subsystems

needs to be investigated, and the simulator needs to be validated with actual system mea-

surements. We believe the development of this simulator will benefit the goal of evaluating

the SDI Battle Mangement Algorithms on various concurrent systems.

REFERENCES

[1] Stone, H. S., "Multiprocessor Scheduling with the Aid of Network Flow Algorithms,

.EEE Trans. Software Engineering, vol. SE-3, pp. 85-94, January 1977.

[2] Bokhari, S. H., "On the Mapping Problem," IEEE Trans. Computers, vol. C-30, No.

3, pp. 207-214, March 1981.

[3] Tilborg, A. M. and Wittie, L. D., "Wave Scheduling-Decentralized Scheduling of Task

Forces in Multicomputers," IEEE Trans. Computers, vol. C-33, No. 9, pp. 835-844,

September 1984.

[4] Heidelberger, P., and S. Lavenberg, "Computer Performance Evaluation Methodol-

ogy," IEEE Trans. on Comp., vol. C-33, Dec. 84.

[5] Ammar, H., and R. Liu, "Hierarchical Models for Parallel Processing Systems Using

the Generalized Stochastic Petri Nets," Proc. 1984 ICPP, IEEE Comp. Soc., Aug. 1984.

r61 Ammar, H., "Analytical Models for Parallel Processing Systems", Ph.D. Dissertation,

15

Elec. and Comp. Engr. Dept., University of Notre Dame, 1985.

[71 Thomasian, A., and P. Bay, "Analytic Queuing Network Models for Parallel Processing

of Task Systems", IEEE Trans. Comp., vol. C-35, Dec. 86.

[8] Cvetanovic, Z., "The Effect of Problem Partitioning, Allocation and Granularity on

the Performance of Multiple Processor Systems" ,IEEE Trans. Comp., vol. C-36, April

87.

[9] Nelson, R., D. Towsley, and A. N. Tantawi, "Performance Analysis of Parallel Pro-

cessing Systems",Proc. 1987 ACM SIGMETRICS ConL., Banff, Alberta, 1987.

[101 Kerola, T., H. Schwetman, "Monit: A Performance Monitoring Tool for Parallel and

Pseudo-Parallel Programs",Proc. 1987 ACM SIGMETRICS Conf., pp163-174.

[11] Marsan, M. A., et al, "Modeling the Software Architecture of A Prototype Parallel

Machine" Proc. 1987 ACM SIGMETRICS Conf., ppl75-185.

[12] Reed, D. A., et al, "Parallel Discrete Event Simulation: A Shared Memory Approach",

Proc. 1987 ACM SIGMETRICS Conf., pp 3 6-3 8 .

[131 Darema-Rogers, F., et al, "Memory Access Patterns of Parallel Scientific Programs",

Proc. 1987 ACM SIGMETRICS Conf., pp46-58.

[141 Jordan, H. F., Structuring Parallel Algorithms in an MIMD Shared Memory En-

vironment, Report no. CSDG84-2, Dept. of Elect. and Comp. Engr., University of

Colorado.

(15] Mehrotra, P., and J. Van Rosendale, The BLAZE Language: A Parallel Language for

Scientific Programming, ICASE Report no. 85-29, NASA Langley Research Center,

Langley, VA 1985.

[161 Pratt, T. W., PISCES: an Environment for Parallel Scientific Computations, ICASE

Report no. 85-12, NASA Langley Research Center, Langley, VA 1985.

16

....

[171 Darema-RQgers, F. et al, An Environment for Parallel Execution, IBM Research Re-

port #11225, Yorktown Heights, NY 1985.

[18] Lusk, E. L., and R. A. Overbeek, Implementation of Monitors with Macros: A Pro-

gramming Aid for the HEP and Other Parallel processors, Report no. ANL-83-97,

Argonne National Laboratory, Argonne, Ill. 1983.

[19] Davidson, G. S. A Practical Paradigm for Parallel Processing Problems, Report no.

SAND85-2389, Sandia National Laboratories, Albuquerque, NM, 1986

[20] Karp, A. H. "Programming for Parallelism,"IEEE Comp., IEEE Comp. Soc., May

1987.

[21] Kuck, D., "High Speed Multiprocessing and Compilation Techniques,"IEEE Trans.

Comp., C-29, 1980, pp 7 63- 7 76.

[22] Allen, J. R., and K. Kennedy, " PFC: A Program to convert Fortran to Parallel

Form," in Supercomputers: Design and Applications, K. Hwang (ed.), IEEE Comp.

Soc., 1984.

[231 Perron, R., and C. Mundie, "The Architecture of the Alliant FX/8 Computer," Digest

of Papers, Compcon, Spring 86, IEEE Comp. Soc., 1986.

[241 Peir, Jih-kwon, and D. Gajski, "CAMP: A Programming Aide For Multiprocessors,"

Proc. 1986 ICPP, IEEE Comp. Soc., pp475-482.

[251 Pfister, G. F., and V. A. Norton, "Hot Spot Contention and Combining in Multistage

Interconnection Networks,"IEEE Trans. Comp., C-34, Oct. 1985.

[26] Pfister, G. F. et al, "The IBM Research Parallel Processor Prototype (RP3): Intro-

duction and Architecture," Proc. 1985 ICPP, IEEE Comp. Soc., pp764-771.

[27] Wirsching, J. E., A Multiprocessor Model With Distributed Task Creation, Report

no. UCRL-53648, Lawrence Livermore National Laboratories, Livermore, CA, 1985.

17

[28] So, K. et al, PSIMUL- A System For Parallel Simulation of the Execution of Parallel

Programs, IBM Research Report #RC11674, 1986.

[29] Ammar, H. H., On the Design, Evaluation, and Tuning of Application Programs on

Parallel Architectures, Technical Report, Department of Electrical and Computer En-

gineering, Clarkson University, Aug 1987.

[30] Agrawal, D.P, et al, "Evaluating the Performance of Multicomputer Configurations",

COMPUTER, pp. 23-37, May 1986.

18

"bb

M ISSION
Of

Rome Air Development Center
RAVC ptans and execu.tes L,seach, deveopmen-, tes.t
and sell'cted acquiU4it~on p'rogkLam~ in s~uppoti.t o6

* Command, ContLoi, Communiucation~s and InteZ2igence
(C31) actv~itie. TechnicaZ and engineeti~ng
,sppor.t wi&thin ateaz o6 competence i65 pkoKde~d to
ESV Pt'~ogam 066ices (POs) and othet ESV etmen.n5
to petPLokm eiective acqui&sition o6 C31 sytms
The a-tea o6 technicae competence incf-de
communicatCion~s, command and con-ttotR, batUCe

*mantagemeznt, in6oltmation p)Loce-5,6ing, sutveittance
sensot, intetigence data cotftec-tion and handting,
s c-Zid s-tate sciences, e.tec-t~omagnetic~s, and
r~topagatAon, and e.ZecVkonic, maintainabi~tt,
and coir1pati3bi&ti.

